THE STRUCTURE OF A NOVEL COMPLEX DERIVED FROM CYCLOOCTADIENETRICARBONYLRUTHENIUM*,**

F. A. COTTON*** and MARIE D. LaPRADE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (U.S.A.) (Received January 10th, 1972)

SUMMARY

When (1,5-cyclooctadiene)tricarbonylruthenium is treated first with $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3^{-}}$ CBF_{4} and then with sodium cyanide, a product of formula $\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{CN}\right) \mathrm{Ru}(\mathrm{CO})_{3}$ is isolated. In order to elucidate the chemistry of this and similar reactions, the structure of this substance has been determined by X-ray crystallography. It is found that the structure involves a cyanocyclooctadienyl ring bound to $\mathrm{Ru}(\mathrm{CO})_{3}$ through a $\mathrm{C}-\mathrm{Ru}$ σ bond and a trihapto-allyl group. The CN group is in an exo position. The systematic name of the compound is 1,2,3,6-tetrahapto-(5-cyanocyclooctadienyl)tricarbonylruthenium. The compound crystallizes in space group Pbca with unit cell dimensions $a=22.756(14) \AA, b=8.296(5) \AA$ and $c=13.186(12) \AA$. The observed density, 1.69 (1) $\mathrm{g} / \mathrm{cm}^{3}$, agrees well with a calculated density of 1.698 for $Z=8$; the molecule occupies a general position. Using 1373 statistically significant reflections collected on a counter diffractometer with Mo- K_{a} radiation, the structure was solved by Patterson and Fourier methods and refined to final residuals of $R_{1}=0.048$ and $R_{2}=0.047$. All hydrogen atoms were refined with isotropic temperature parameters, while all other atoms were assigned anisotropic temperature parameters.

INTRODUCTION

The treatment of (1,5 -cyclooctadiene) $\mathrm{M}(\mathrm{CO})_{3}$ compounds, $\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}$, Os, with the hydride abstracting reagent $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CBF}_{4}$ generates several types of cationic complexes, $\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{M}(\mathrm{CO})_{3}\right]^{+}$, from which neutral molecules structurally different from the original $1,5-\mathrm{C}_{8} \mathrm{H}_{12}$ complexes can be obtained on treatment of these cations with nucleophiles.

In a previous communication ${ }^{1}$ it was proposed that one important reaction sequence beginning with tricarbonyl(1,5 -cyclooctadiene)metal (0) complexes is:

[^0]
(7)

The use of nucleophiles, other than H^{-}(as BH_{4}^{-}), for example, CN^{-}, whose location in the products can be ascertained, is of interest because of the information thus provided about the detailed course of the reactions. We report here on one example, namely the transformation of (IV) into (V) and the characterization of the product (V). The structure confirms the general views which have been given ${ }^{1}$ as to the course of this and related reactions.

PROCEDURE

The sample of $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{CNRu}(\mathrm{CO})_{3}$ was supplied by Professor J. Lewis and Dr. B. F. G. Johnson. White single crystals suitable for X-ray work were obtained by crystallization from CHCl_{3} and were mounted in thin-walled Lindeman glass capillaries. Single crystals examined by Weissenberg and precession photography were found to be orthorhombic. The systematic absence, $h 0 l$ for $l=2 n+1,0 k l$ for $k=$ $2 n+1$ and $h k 0$ for $h=2 n+1$, identified the space group as $P b c a$ (no. 61). The unit cell dimensions at 24.8° are $a=22.756(14) \AA, b=8.296(5) \AA, c=13.186(12) \AA$. The quoted values for a, b and c were derived from a least-squares refinement of the setting angles for 26 manually centered reflections on a General Electric XRD-5 manual diffractometer using copper radiation, $\lambda\left(K_{a 1}\right)=1.5405 \AA ; \lambda\left(K_{\alpha 2}\right)=1.5443 \AA$.

The density was measured by flotation in aqueous barium iodide solution as $1.69 \pm 0.01 \mathrm{~g} / \mathrm{cc}$. The density calculated from the formula weight of 318.296 , the unitcell volume of $2489.3 \AA^{3}$, and $Z=8$ is $1.698 \mathrm{~g} / \mathrm{cc}$. With $Z=8$ in the space group Pbca there are no crystallographic symmetry elements imposed on the molecule.

Intensities were measured using a crystal with approximate dimensions of $0.26 \times 0.20 \times 0.33 \mathrm{~mm}$; crystal faces were (011), (100), (100), (001), (001), (101), $\overline{10} 0 \overline{1})$, $(0 \overline{31})$ and $(02 \overline{3})$. The crystal was aligned with its a^{*} axis coincident with the ϕ axis of the goniometer. Mo- K_{α} radiation $\left[\lambda\left(K_{\bar{\alpha}}\right)=0.7107\right]$ filtered by zirconium foil was used to measure 1996 independent reflections (including 322 systematically absent in $P b c a$) within the sphere $\theta \leqslant 25^{\circ}$. Intensities were measured by a scintillation counter with the pulse-height discriminator set to accept 95% of the Mo- K_{α} peak. The distances from the crystal to the source and from the crystal to the circular screening aperture (2°) were 14.6 cm and 17.9 cm , respectively. A moving-crystal-moving-counter scan technique was employed with a scan range of 1.33° to conform with the mosaic spread of the crystal and a take-off angle of 2°. The scan rate was $4^{\circ} / \mathrm{min}$.

The centering and intensity of five reflections ($1200 ; 040,925,464$, and 002) were checked every 100 reflections. They followed the same decay rate, which was linear with time of exposure of the crystal to the X-ray beam. At the completion of taking the data set this decrease was 19% of the original intensity. The integrated intensities were obtained from the total counts (P) of a coupled $2 \theta-\omega$ scan from $2 \theta_{\text {calcd. }}-0.66^{\circ}$ to $2 \theta_{\text {calcd. }}+0.67^{\circ}$ and stationary background measurements (B_{1}, B_{2}) of 10 sec duration at the limits of each scan. Assuming that the background varies linearly (or gives an equivalent integrated total) through the scan range and taking the decomposition into account $I=\left(P-B_{1}-B_{2}\right) /(1-K \cdot t)$, where $t=$ time of exposure (in \min) and K is a constant derived from the above named five reflections by plotting $[I(t=0)-I(t)] / I(t=0)$ versus time and fitting a least-squares line. The standard deviation in the intensity was defined as

$$
\sigma(I)=\left\{\frac{P+B_{1}+B_{2}+\left[0.02 \cdot\left(P-B_{1}-B_{2}\right)\right]^{2}}{(1-K \cdot t)^{2}}+\left[\frac{\left(P-B_{1}-B_{2}\right) \cdot t \sigma(K)}{(1-K \cdot t)^{2}}\right]^{2}\right\}^{\frac{1}{2}}
$$

In the latter stages of data collection eight reflections of $h k 0$ for which $h=2 n+1$ were found to have $I>3 \sigma(I)$, the largest of which was 510 at $I=15 \sigma(I)$, indicating that the space group might be Pbcm or $\mathrm{Pbc} 2_{1}$.

As the intensities were converted to values of F_{0}^{2} and F_{0} (on a relative scale) 631 reflections (including 86 reflections on $h k 0$ for which $h=2 n+1$ and 236 other systematic absences) were rejected using the criterion $I<2 \sigma(I)$. Only the remaining 1373 reflections were used in solving and refining the structure. Of these 134 had $2<I / \sigma(I) \leqslant 3,271$ had $3<I / \sigma(I) \leqslant 6,212$ had $6<I / \sigma(I) \leqslant 10$ and 756 had $10<I /$ $\sigma(I) \leqslant 50$. The data were corrected for absorption ($\mu=12.29 \mathrm{~cm}^{-1}$). The minimum and maximum transmission coefficients were 0.61688 and 0.76829 . The average transmission coefficient was 0.66782 . The R.M.S. variation in transmission coefficients was 0.02999 or 4.5%.

The Ru atoms were located in a three-dimensional Patterson map. Attempts to find the rest of the atoms using both Fourier and direct methods, assuming space group $P b c m$, were unsuccessful. Using the space group $P b c 2_{1}$ and two independent molecules per unit cell, the remaining atoms (not including hydrogen atoms) were located. Refinement in $P b c 2_{1}$ by full-matrix, least-squares methods minimizing $\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, converged at $R_{1}=\Sigma\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|=0.065$. Scattering factors used here and subsequently were those of Cromer and Waber ${ }^{2 a}$. Anomalous dispersion corrections ${ }^{2 b}$ for ruthenium, oxygen and nitrogen were included in the calculated structure factors. Weights were assigned using the relation $w=\sigma^{-2}$, where $\sigma=\sigma(I) /\left(2 L p \cdot F_{\mathrm{o}}\right)$, with $L p$ representing the Lorentz and polarization corrections. Anisotropic temperature factors of the form $\exp \left[-\left(\beta_{11} \cdot h^{2}+\beta_{22} \cdot k^{2}+\beta_{33} \cdot l^{2}+\right.\right.$ $2 \beta_{12} \cdot h \cdot k+2 \beta_{13} \cdot h \cdot l+2 \beta_{23} \cdot k \cdot l$)] were used for all atoms (except for hydrogen atoms introduced later).

At this point, the two independent molecules were found to be nearly in the relationship corresponding to an a glide plane perpendicular to the c axis. Many angles and distances which should have been chemically equivalent had widely disparate and relatively unreasonable values although averages of the pairs were quite acceptable. Refinement was therefore continued in space group Pbca with one molecule in the asymmetric unit, and the eight nonzero reflections on $h k 0$ with $h \neq 2 n$ were deleted from the data set.
(continued on p. 351)

TABLE 1
THE OBSERVED AND CALCULATED STRUCTURE FACTORS

	¢
	O
-z: 2	E
-	

(Table continued)

TABLE 1 (continued)

TABLE 2
ATOMIC PARAMETERS

Atom	Positional parameters			Thermal parameters $\left(A^{2}\right)^{\text {a }}$						
	x	y	2	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}	B
Ru	$0.62436(4)$	0.55681 (8)	0.26654 (4)	5.72(3)	4.98(3)	3.65(3)	-0.26(5)	0.25(3)	-0.18(3)	
$\mathrm{C}^{\prime}(1)$	$0.6198(5)$	$0.7867(11)$	0.2311 (6)	8.9(6)	4.8 (4)	$5.6(4)$	-0.4(6)	-0.2(5)	-0.1(3)	
O(1)	$0.6145(4)$	0.9142(9)	0.2019 (6)	14.2(7)	6.0(4)	8.1(4)	-0.7(5)	-1.7(4)	1.1 (3)	
$\mathrm{C}^{\prime}(2)$	$0.7033(4)$	0.5341 (14)	$0.2100(6)$	5.6 (4)	9.7 (7)	4.1(4)	-0.7(5)	-0.2(3)	$1.7(4)$	
0 (2)	0.7475(4)	0.5160(14)	0.1806 (5)	6.34)	20.6(1.0)	$7.7(3)$	-0.0(5)	2.4(4)	2.6 (5)	
$\mathrm{C}^{\prime}(3)$	0.5798 (4)	$0.4955(1)$	$0.1506(6)$	7.4 (5)	5.6 (5)	4.3(4)	1.1(4)	-0.3(4)	-0.1(3)	
$\mathrm{O}(3)$	0.5508 (3)	$0.4525(10)$	0.0858(5)	9.7 (5)	10.9(5)	6.5(3)	1.4(5)	-2.7(3)	-2.6(4)	
$\mathrm{C}(1)$	0.5493 (5)	0.5387 (14)	$0.3774(7)$	6.36)	6.7(6)	5.6(4)	1.7(5)	0.7(4)	-0.1(4)	
C(2)	0.5957 (7)	$0.6278(12)$	0.4203(6)	8.6 (6)	5.1 (5)	3.9 (3)	0.2(5)	1.4(4)	-1.0(3)	
C(3)	$0.6533(5)$	$0.5670(13)$	0.4322(6)	8.5(6)	$5.7(5)$	4.1 (3)	-1.3(6)	-0.4(4)	-0.9(4)	
C(4)	$0.6685(5)$	0.3990(12)	$0.4701(6)$	$6.26)$	6.4(6)	4.5(4)	-0.3(4)	-0.7(4)	-0.3(3)	
C(5)	0.6769 (4)	0.2792 (11)	0.3830(6)	6.0 (5)	5.6 (5)	4.7(4)	-0.2(4)	0.1 (4)	0.1 (3)	
C(6)	0.6297 (5)	0.3031 (10)	0.3023(6)	5.4(4)	5.3 (4)	4.1 (3)	0.5(4)	0.3 (3)	-0.5(3)	
C(7)	0.5677 (4)	0.2422(13)	0.3324(8)	5.4(5)	5.9 (5)	6.3(5)	-0.8(5)	-0.6(4)	0.2(4)	
$\mathrm{C}(8)$	$0.5356(5)$	0.3606 (15)	0.4005 (9)	$6.56)$	8.1 (7)	6.5(6)	1.8(5)	1,3(5)	0.3 (5)	
C(9)	0.6796 (5)	$0.1106(13)$	0.4199(7)	6.8(6)	6.6(6)	5.6 (4)	$0.5(5)$	-0.3(4)	-0.5(4)	
N	0.6806 (4)	-0.0208(11)	$0.4471(7)$	9.5(6)	5.7(5)	8.9(5)	0.7(5)	-0.7(4)	1.3(4)	
$\mathrm{H}(1)$	0.518(3)	0.596(9)	0.365 (5)							4.6 (1.6)
$\mathrm{H}(2)$	0.597(3)	0.750(9)	0.424(5)							5.0(1.4)
H(3)	0.682(3)	0.653(9)	0.452(5)							5.3(1.5)
H(41)	0.631 (4)	$0.358(12)$	$0.505(6)$							7.6(2.2)
H(42)	$0.704(4)$	$0.404(11)$	0.501 (7)							$7.4(2.3)$
H(5)	0.710(3)	0.307(9)	0.347(5)							$4.6(1.5)$
H(6)	0.634(3)	0.248(8)	0.253(5)							4.0(1.5)
H(71)	0.565(4)	$0.136(11)$	$0.368(6)$							6.3 (2.0)
H (72)	0.540(4)	0.230(12)	$0.275(7)$							8.2(2,3)
$\mathrm{H}(81)$	0.548 (4)	0.340 (13)	$0.459(7)$							7.4(2.6)
H(82)	0.488(5)	0.368 (12)	0.396(7)							8.6 (2.4)

${ }^{a}$ The $B_{i j}$'s, in \AA^{2}, are related to the dimensionless $\beta_{i j}$'s employed during refinement as $B_{i j}=4 \beta_{i j} /\left(a_{i} \cdot a_{j}^{*}\right)$.

After several cycles, with $R_{1}=0.057$ and $R_{2}=\left\{w \cdot\left[\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right]^{2} / \Sigma\left(w \cdot F_{\mathrm{o}}^{2}\right)\right\}^{\frac{1}{2}}=$ 0.059 an electron density difference map was computed and all of the hydrogen atoms were unambiguously located. The hydrogen atoms were refined isotropically while refinement of the other atoms was continued anisotropically. The refinement was considered complete when in one cycle no thermal or positional parameter changed by as much as $1 / 5$ its estimated standard deviation. After this cycle R_{1} was 0.048 and R_{2} was 0.047 . No systematic dependence of $w \cdot\left(F_{0}-F_{c}\right)^{2}$ on $\left|F_{0}\right|$ or $\sin \theta / \lambda$ was observed. In the final electron-density map the standard deviation in the electron density was $0.10 \mathrm{e} / \AA^{3}$. The highest peak in the difference map was in the vicinity of the Ru atom and contained $0.97 \mathrm{e} / \AA^{3}$. The final standard deviation of an observation of unit weight was 0.92 . Of the $309 F_{c}$ values corresponding to reflections not included in the refinement, 106 were found to lie between $1.0 \times F_{\min }$ and $1.5 \times F_{\min }$, where $F_{\text {min }}$ is the smallest $F_{\text {vbs }}$ included in the refinement, and one was between $1.5 \times F_{\min }$ and $2.0 \times F_{\min }$; none was higher than $2.0 \times F_{\min }$.

Since refinement in $P b c a$ was successful (lower R than in $P b c 2_{1}$ with half as many parameters) and since those reflections which violate the condition for the a glide did not change in intensity when the a^{*} axis was inclined at an angle of 18° with respect to the ϕ axis of the goniometer and are, therefore, not Renninger reflections, the appearance of the anomalous $h k 0$ reflections is unexplained. A list of the F_{o} and final F_{c} values, in 0.1 electrons, is presented in Table 1.

The following computer programs were used : PICK2, J. A. Ibers, diffractometer settings; DR69, M. D. LaPrade, data reduction; DRAB70, B. G. DeBoer, absorption correction; FORDAP, A. Zalkin, Fourier syntheses; SFIX, local version of SFLS5, C. T. Prewitt, full-matrix least-squares refinement; MGEOM, J. S. Wood, least-squares planes; STAN1, B. G. DeBoer, distances, angles and e.s.d.'s; ORTEP,

Fig. 1. A perspective view of the 1,2,3,6-tetrahapto-(5-cyanocyclooctadienyl)tricarbonyl ruthenium molecule showing ellipsoids of thermal motion which have been scaled to 50% probability distributions.
J. Organometal. Chem., 39 (1972)

TABLE 3
BOND LENGTHS (\AA)

$\mathrm{Ru}-\mathrm{C}(1)$	$2.252(10)$	$\mathrm{C}^{\prime}(1)-\mathrm{O}(1)$	$1.13(1)$
$\mathrm{Ru} u-\mathrm{C}(2)$	$2.210(8)$	$\mathrm{C}^{\prime}(2)-\mathrm{O}(2)$	$1.09(1)$
$\mathrm{Ru} u \mathrm{C}(3)$	$2.284(8)$	$\mathrm{C}^{\prime}(3)-\mathrm{O}(3)$	$1.14(1)$
$\mathrm{Ru}-\mathrm{C}(6)$	$2.161(9)$		
$\mathrm{Ru}-\mathrm{C}^{\prime}(1)$	$1.966(9)$	$\mathrm{C}(1)-\mathrm{H}(1)$	$0.88(7)$
$\mathrm{Ru}-\mathrm{C}^{\prime}(2)$	$1.954(10)$	$\mathrm{C}(2)-\mathrm{H}(2)$	$1.02(8)$
$\mathrm{Ru}-\mathrm{C}^{\prime}(3)$	$1.904(9)$	$\mathrm{C}(3)-\mathrm{H}(3)$	$1.00(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.41(2)$	$\mathrm{C}(4)-\mathrm{H}(41)$	$1.02(10)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.41(1)$	$\mathrm{C}(4)-\mathrm{H}(42)$	$0.91(10)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.52(1)$	$\mathrm{C}(5)-\mathrm{H}(5)$	$0.92(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.53(1)$	$\mathrm{C}(6)-\mathrm{H}(6)$	$0.80(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.53(1)$	$\mathrm{C}(7)-\mathrm{H}(7)$	$0.99(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.55(1)$	$\mathrm{C}(7)-\mathrm{H}(72)$	$0.99(9)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.52(2)$	$\mathrm{C}(8)-\mathrm{H}(81)$	$0.84(9)$
$\mathrm{C}(8)-\mathrm{C}(1)$	$1.54(2)$	$\mathrm{C}(8)-\mathrm{H}(82)$	$1.09(10)$
$\mathrm{C}(5)-\mathrm{C}(9)$	$1.48(1)$		
$\mathrm{C}(9)-\mathrm{N}$	$1.15(1)$		

TABLE 4
INTERATOMIC ANGLES (${ }^{\circ}$)

$\mathrm{C}^{\prime}(1)-\mathrm{Ru}-\mathrm{C}^{\prime}(2)$	93.0(5)	$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{H}(1)$	113(5)
$C^{\prime}(1)-R u-C^{\prime}(3)$	92.3(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	114(5)
$\mathrm{C}^{\prime}(2)-\mathrm{Ru}-\mathrm{C}^{\prime}(3)$	99.0(4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	124(4)
		$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	109 (4)
$\mathrm{Ru} \mathrm{C}^{\prime}(1)-\mathrm{O}(1)$	173.0(9)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	112(4)
$\mathrm{Ru}-\mathrm{C}^{\prime}(2)-\mathrm{O}(2)$	177.2(12)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	115(4)
$\mathrm{Ru}-\mathrm{C}^{\prime}(3)-\mathrm{O}(3)$	175.1(9)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(41)$	105 (6)
		$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(42)$	108 (6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123.6(10)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(41)$	103(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	125.0(10)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(42)$	105(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.2(7)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	$111.8(7)$
C(4)-C(5)-C(6)	110.6 (8)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	$109(5)$
C(5)-C(6)-C(7)	114.8(7)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	112.4(8)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	112.3 (9)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	100(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	113.9 (9)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	113(5)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	125.2(10)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Hf}(6)$	98(5)
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{N}$	178.4(9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(71)$	$117(5)$
		$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(72)$	115(6)
$\mathrm{H}(41)-\mathrm{C}(4)-\mathrm{H}(42)$	104(8)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(71)$	106(5)
$\mathrm{H}(71)-\mathrm{C}(7)-\mathrm{H}(72)$	103(8)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(72)$	102(6)
$\mathrm{H}(81)-\mathrm{C}(8)-\mathrm{H}(82)$	114(9)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(81)$	104(7)
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{H}(5)$	112(5)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(82)$	119(5)
		$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(81)$	108(8)
		$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(82)$	98(5)

TABLE 5
MOLECUIAR PLANES

1. Plane A containing $C(1), C(2), C(3)$
$-0.242 x-0.349 y+0.905 z+0.080=0$
Distance of atoms from plane (\AA)

$\mathrm{H}(1)$	-0.14
$\mathrm{H}(2)$	-0.32
$\mathrm{H}(3)$	-0.17

2. Plane B containing $C(1), C(3), C(4), C(8)$
$-0.305 x+0.254 y+0.918 z-1.887=0$
Distance of atoms from plane (\AA)

$\mathrm{C}(1)$	-0.0006	$\mathrm{H}(3)$	0.22
$\mathrm{C}(3)$	0.0006	$\mathrm{H}(41)$	0.59
$\mathrm{C}(4)$	-0.0004	$\mathrm{H}(42)$	0.13
$\mathrm{C}(8)$	0.0004	$\mathrm{H}(81)$	0.57
$\mathrm{H}(1)$	0.19	$\mathrm{H}(82)$	0.29

3. Plane C containing $C(4), C(5), C(7), C(8)$
$-0.109 x-0.739 y+0.665 z-0.001=0$
Distance of atoms from plane (\AA)

$\mathrm{C}(4)$	0.023	$\mathrm{H}(41)$	0.68
$\mathrm{C}(5)$	-0.028	$\mathrm{H}(42)$	0.17
$\mathrm{C}(7)$	0.029	$\mathrm{H}(71)$	1.01
$\mathrm{C}(8)$	-0.023	$\mathrm{H}(72)$	-0.33
$\mathrm{C}(9)$	1.324	$\mathrm{H}(81)$	0.60
$\mathrm{H}(5)$	-0.59	$\mathrm{H}(82)$	0.00

4. Plane D containing $C(5), C(6), C(7)$
$-0.215 x+0.898 y+0.383 z+0.702=0$
Distance of atoms from plane (\AA)

$\mathrm{C}(9)$	-1.084	$\mathrm{H}(71)$	-0.61
$\mathrm{H}(5)$	-0.15	$\mathrm{H}(72)$	-0.23
$\mathrm{H}(6)$	-0.69		

Angle between A and B $144^{\circ} 44^{\prime}$
Angle between B and C $117^{\circ} 6^{\prime}$
Angle between C and D 112 ${ }^{\circ} 41^{\prime}$
C. K. Johnson, thermal ellipsoid drawings; PUBTAB, R. C. Elder, structure factor table.

RESULTS

The molecular structure and atom numbering scheme are shown in Fig. 1. The atomic positional and thermal parameters are presented in Table 2. The bond distances are given in Table 3 and various interatomic angles are listed in Table 4. Table 5 gives the equations for several planes, the distances of atoms from these planes and dihedral angles. In all tables, figures in parentheses are estimated standard deviations occurring in the least significant digit of the parameter.

[^1]
DISCUSSION

The results presented here support the general scheme in eqn. (1) and, specifically, substantiate the correctness of structures of type (III). The location of the cyano group in (V) implies that this nucleophile attacks the intermediate, (II), from the exo direction at ring carbon atom 5 . There is, of course, no certainty that all other nucleophiles, especially one as unique as H^{-}, do the same, but it seems likely that most of them will behave in the same way.

The carbocyclic ligand is attached to the ruthenium atom by a σ bond ($2.16 \AA$) from $C(6)$ and by coordination of a π-allyl group formed by $C(1), C(2)$ and $C(3)$ $[\mathrm{Ru}-\mathrm{C}(1), 2.25 \AA ; \mathrm{Ru}-\mathrm{C}(2), 2.21 \AA ; \mathrm{Ru}-\mathrm{C}(3), 2.28 \AA]$. The cyano group occupies the exo position on $C(5)$. The manner of attachment of the ring to the metal naturally requires extensive folding of the ring, and this can be seen in Fig. 1. All bond lengths within the ring system have reasonable values, viz., $C(5)-C(9), 1.48 \AA ; C(9)-N, 1.15$ $\AA ; C-C$ single bonds, $1.52-1.55 \AA ; C-C$ bonds in the π-allyl group, $1.41 \AA$. The $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ groups have $\mathrm{Ru}-\mathrm{C}(\mathrm{av})=.1.94 \AA$ and $\mathrm{C}-\mathrm{O}(\mathrm{av})=.1.12 \AA$. The $\mathrm{C}-\mathrm{Ru}-\mathrm{C}$ angles average 94.8°.

The (π-allyl)-Ru bonding is generally typical of (π-allyl)-metal bonding in comparable systems. For example, in the molecules ${ }^{3}\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Mo}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)$ and $\left(h^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Mo}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Fe}(\mathrm{CO})_{3}$, the $\mathrm{C}_{7} \mathrm{H}_{7}$ rings are bound to the molybdenum atom through π-allyl moieties and the outer $\mathrm{M}-\mathrm{C}$ distances exceed the inner $\mathrm{M}-\mathrm{C}$ distances while the $\mathrm{C}-\mathrm{C}$ distances are $\approx 1.41 \AA$. The $\mathrm{Ru}(\mathrm{CO})_{3}$ group is not greatly different from that in $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Ru}(\mathrm{CO})_{3}$, where the mean $\mathrm{Ru}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances are 1.92 and $1.13 \AA$, respectively ${ }^{4}$.

As often happens when seven- or eight-membered carbocyclic rings have a multiple attachment to a single metal atom, all $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles within the ring are greater than the ideal values for $s p^{2}$ or $s p^{3}$ hybridization. In this molecule, the former average 124.6 and the latter range from 110.6° to 114.7°. The $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles are correspondingly smaller.

The only previous indication that a cyclooctapolyene ring can bond to a metal in this $1,2,3,6$-tetrahapto fashion is found in a cyclooctatetraene complex of tricarbonylosmium, where such a structure has been inferred from the ${ }^{1} \mathrm{H}$ NMR spectrum ${ }^{5}$. With the COT compound the 1,2,3,6-tetrahapto structure rearranges thermally to a 1,2,3,4-tetrahapto one, whereas, with 1,5 -cyclooctadiene the $1,2,3,6$-tetrahapto structure appears to be thermodynamically favored over the $1,2,5,6-$ or $1,2,3,4$-tetrahapto ones ${ }^{1}$.

REFERENCES

1 F. A. Cotton, A. J. Deeming, P. L. Josty, S. S. Ullah, A. J. P. Domingos, B. F. G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4624.

2 (a) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18 (1965) 104;
(b) D. T. Cromer, Acta Crystallogr., 18 (1965) 17.

3 F. A. Cotton, B. G. DeBoer and M. D. LaPrade, Special Lectures, 23rd Int. Congr. Pure Appl. Chem., Boston, 6 (1971) 1.
4 F. A. Cotton and R. Eiss, J. Amer. Chem. Soc., 91 (1969) 6593.
5 M. I. Bruce, M. Cooke, M. Green and D. J. Westlake, J. Chem. Soc. A, (1969) 987.

[^0]: * Supported in part by the National Science Foundation.
 ** Preliminary Communciation: F. A. Cotron, M. D. LaPrade, B. F. G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4626.
 ** Address correspondence to this author at: Department of Chemistry, Texas A \& M University, College Station, Texas 77843.

[^1]: J. Organometal. Chem., 39 (1972)

