THE STRUCTURE OF A NOVEL COMPLEX DERIVED FROM CYCLOOCTADIENETRICARBONYLRUTHENIUM*,**

F. A. COTTON*** and MARIE D. LaPRADE

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (U.S.A.) (Received January 10th, 1972)

SUMMARY

When (1,5-cyclooctadiene)tricarbonylruthenium is treated first with $(C_6H_5)_3$ -CBF₄ and then with sodium cyanide, a product of formula $(C_8H_{11}CN)Ru(CO)_3$ is isolated. In order to elucidate the chemistry of this and similar reactions, the structure of this substance has been determined by X-ray crystallography. It is found that the structure involves a cyanocyclooctadienyl ring bound to $Ru(CO)_3$ through a C-Ru σ bond and a trihapto-allyl group. The CN group is in an exo position. The systematic name of the compound is 1,2,3,6-tetrahapto-(5-cyanocyclooctadienyl)tricarbonylruthenium. The compound crystallizes in space group Pbca with unit cell dimensions a=22.756(14) Å, b=8.296(5) Å and c=13.186(12) Å. The observed density, 1.69(1) g/cm³, agrees well with a calculated density of 1.698 for Z=8; the molecule occupies a general position. Using 1373 statistically significant reflections collected on a counter diffractometer with Mo- K_{α} radiation, the structure was solved by Patterson and Fourier methods and refined to final residuals of $R_1=0.048$ and $R_2=0.047$. All hydrogen atoms were refined with isotropic temperature parameters, while all other atoms were assigned anisotropic temperature parameters.

INTRODUCTION

The treatment of (1,5-cyclooctadiene)M(CO)₃ compounds, M=Fe, Ru, Os, with the hydride abstracting reagent $(C_6H_5)_3CBF_4$ generates several types of cationic complexes, $[C_8H_{11}M(CO)_3]^+$, from which neutral molecules structurally different from the original 1,5- C_8H_{12} complexes can be obtained on treatment of these cations with nucleophiles.

In a previous communication¹ it was proposed that one important reaction sequence beginning with tricarbonyl(1,5-cyclooctadiene)metal(0) complexes is:

^{*} Supported in part by the National Science Foundation.

^{**} Preliminary Communication: F. A. Cotton, M. D. LaPrade, B. F. G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4626.

^{***} Address correspondence to this author at: Department of Chemistry, Texas A & M University, College Station, Texas 77843.

The use of nucleophiles, other than H^- (as BH_4^-), for example, CN^- , whose location in the products can be ascertained, is of interest because of the information thus provided about the detailed course of the reactions. We report here on one example, namely the transformation of (IV) into (V) and the characterization of the product (V). The structure confirms the general views which have been given¹ as to the course of this and related reactions.

PROCEDURE

The sample of $C_8H_{11}CNRu(CO)_3$ was supplied by Professor J. Lewis and Dr. B. F. G. Johnson. White single crystals suitable for X-ray work were obtained by crystallization from CHCl₃ and were mounted in thin-walled Lindeman glass capillaries. Single crystals examined by Weissenberg and precession photography were found to be orthorhombic. The systematic absence, h0l for l=2n+1, 0kl for k=2n+1 and hk0 for h=2n+1, identified the space group as Pbca (no. 61). The unit cell dimensions at 24.8° are a=22.756(14) Å, b=8.296(5) Å, c=13.186(12) Å. The quoted values for a, b and c were derived from a least-squares refinement of the setting angles for 26 manually centered reflections on a General Electric XRD-5 manual diffractometer using copper radiation, $\lambda(K_{a1})=1.5405$ Å; $\lambda(K_{a2})=1.5443$ Å.

The density was measured by flotation in aqueous barium iodide solution as 1.69 ± 0.01 g/cc. The density calculated from the formula weight of 318.296, the unitcell volume of 2489.3 Å³, and Z=8 is 1.698 g/cc. With Z=8 in the space group *Pbca* there are no crystallographic symmetry elements imposed on the molecule.

Intensities were measured using a crystal with approximate dimensions of $0.26 \times 0.20 \times 0.33$ mm; crystal faces were (011), (100), (100), (001), (001), (101), 101), (031) and (023). The crystal was aligned with its a^* axis coincident with the ϕ axis of the goniometer. Mo- K_{α} radiation $[\lambda(K_{\overline{\alpha}})=0.7107]$ filtered by zirconium foil was used to measure 1996 independent reflections (including 322 systematically absent in *Pbca*) within the sphere $\theta \leq 25^{\circ}$. Intensities were measured by a scintillation counter with the pulse-height discriminator set to accept 95% of the Mo- K_{α} peak. The distances from the crystal to the source and from the crystal to the circular screening aperture (2°) were 14.6 cm and 17.9 cm, respectively. A moving-crystal-moving-counter scan technique was employed with a scan range of 1.33° to conform with the mosaic spread of the crystal and a take-off angle of 2°. The scan rate was 4°/min.

The centering and intensity of five reflections (1200; 040, 925, 464, and 002) were checked every 100 reflections. They followed the same decay rate, which was linear with time of exposure of the crystal to the X-ray beam. At the completion of taking the data set this decrease was 19% of the original intensity. The integrated intensities were obtained from the total counts (P) of a coupled $2\theta - \omega$ scan from $2\theta_{calcd.} - 0.66^{\circ}$ to $2\theta_{calcd.} + 0.67^{\circ}$ and stationary background measurements (B_1 , B_2) of 10 sec duration at the limits of each scan. Assuming that the background varies linearly (or gives an equivalent integrated total) through the scan range and taking the decomposition into account $I = (P - B_1 - B_2)/(1 - K \cdot t)$, where t = time of exposure (in min) and K is a constant derived from the above named five reflections by plotting [I(t=0) - I(t)]/I(t=0) versus time and fitting a least-squares line. The standard deviation in the intensity was defined as

$$\sigma(I) = \left\{ \frac{P + B_1 + B_2 + [0.02 \cdot (P - B_1 - B_2)]^2}{(1 - K \cdot t)^2} + \left[\frac{(P - B_1 - B_2) \cdot t\sigma(K)}{(1 - K \cdot t)^2} \right]^2 \right\}^{\frac{1}{2}}$$

In the latter stages of data collection eight reflections of hk0 for which h=2n+1 were found to have $I > 3\sigma(I)$, the largest of which was 510 at $I=15\sigma(I)$, indicating that the space group might be *Pbcm* or *Pbc2*₁.

As the intensities were converted to values of F_o^2 and F_o (on a relative scale) 631 reflections (including 86 reflections on hk0 for which h=2n+1 and 236 other systematic absences) were rejected using the criterion $I < 2\sigma(I)$. Only the remaining 1373 reflections were used in solving and refining the structure. Of these 134 had $2 < I/\sigma(I) \le 3$, 271 had $3 < I/\sigma(I) \le 6$, 212 had $6 < I/\sigma(I) \le 10$ and 756 had $10 < I/\sigma(I) \le 50$. The data were corrected for absorption ($\mu = 12.29 \text{ cm}^{-1}$). The minimum and maximum transmission coefficients were 0.61688 and 0.76829. The average transmission coefficient was 0.66782. The R.M.S. variation in transmission coefficients was 0.02999 or 4.5%.

The Ru atoms were located in a three-dimensional Patterson map. Attempts to find the rest of the atoms using both Fourier and direct methods, assuming space group *Pbcm*, were unsuccessful. Using the space group *Pbc2*₁ and two independent molecules per unit cell, the remaining atoms (not including hydrogen atoms) were located. Refinement in *Pbc2*₁ by full-matrix, least-squares methods minimizing $\Sigma(|F_o| - |F_c|)^2$, converged at $R_1 = \Sigma(||F_o| - |F_c||)/\Sigma|F_o| = 0.065$. Scattering factors used here and subsequently were those of Cromer and Waber^{2a}. Anomalous dispersion corrections^{2b} for ruthenium, oxygen and nitrogen were included in the calculated structure factors. Weights were assigned using the relation $w = \sigma^{-2}$, where $\sigma = \sigma(I)/(2Lp \cdot F_o)$, with *Lp* representing the Lorentz and polarization corrections. Anisotropic temperature factors of the form $\exp[-(\beta_{11} \cdot h^2 + \beta_{22} \cdot k^2 + \beta_{33} \cdot l^2 + 2\beta_{12} \cdot h \cdot k + 2\beta_{13} \cdot h \cdot l + 2\beta_{23} \cdot k \cdot l)]$ were used for all atoms (except for hydrogen atoms introduced later).

At this point, the two independent molecules were found to be nearly in the relationship corresponding to an *a* glide plane perpendicular to the *c* axis. Many angles and distances which should have been chemically equivalent had widely disparate and relatively unreasonable values although averages of the pairs were quite acceptable. Refinement was therefore continued in space group *Pbca* with one molecule in the asymmetric unit, and the eight nonzero reflections on hk0 with $h \neq 2n$ were deleted from the data set. (continued on p. 351)

TABLE 1

THE OBSERVED AND CALCULATED STRUCTURE FACTORS

 $(\times 10)$ (orbital e)

_																			
		ACAL		12 476	FC 44	15	6 376	199	3	7 3514	3408				FCAL 10			250	PCAL 234
•	C -387	+ * > ~	2.1	12 1-2	3.2	12	4 114	-	ż	2 393	421	1.5		171	217		1-	763	367
	2 1344	1447	- 13	12 265	209		6 187	191	- 1	2 247	258	10		140	172	ś	14	224	219
- 12	7 1979	1635	- 17	12 204	194	- 'i	7 911	444	6	n 139+	1098	13	6	121	iti	1	ĩ5	155	172
14	1 559	. 212	1	14 357	342	2	7 1 177	1154	13	S 202	224	19		240		2	15	220	144
2	0 919	633		14 375	334	- 2	7 362	339	14	3 222	205	- 11		224	191	2		· 3•	104
- Zw	- · · · · · · ·	441	÷	14 104	394	•	7 1372	1350	16	784 0	542	24		134	112	z	C 2	100	2817
	2 1044	2722		15 237	232	;	7 21	80.5	22	3 157	2113	?	- 1	210	551	:	~ ~ ·	42	2064
;	2 1294	1171	···.	1		ġ	7 175	467	÷.	1 1417	1357	ź	,	111	1.42	•	÷.	500	297
	2 3467	2584	- 1	2 477	224	10	1 467	934		1 22	369			751	748	10	្រុះ	373-	1313
- 2	2 11 15	1259		2 237	194	12	7 38	127	- 1	1 222	577		- 5	713	708	14	ä	42.6	
- ř	2 1261	1101	ă	 ane 	80	- 13	7 194	21.4		1 1298	1229	Ť	7		480	22	3	315	283
	2 3544	3 197	17	0 1111	1042	14	7 727	717		1 132	342			623	623		÷.	247	1287
12	2 1974	1 574	- 12	e 327	332	16	7 139	111	•	1 17	74	10	÷	122	106		- i '	214	21.3
14	2 212	139	18	C 99	92	17	7 212	224	10	1 111	104	11	,	265	\$79	•	1	295	288
17	2 2.5	248	2.	0 119	114	10	7 335	319	12	1 322	637	- 13	- ;	101		- 2	1	167	151
10	2 111	10	ź	1 3725	3495	'n	7 199	167	16	1 565	575	- 15	;	210	233	7	î	216	237
19	2 204	21.9	,	1 3/18	277	22	7 241	21.4	17	1 133		14	_ !	374	351		÷	155	20.9
- 22	2 213	211	- 3	1 23	112		4 400	474		1 111	173	- 55	- ;	230	211	10	1	313	434
24	2 413	372	۵	1 1451	1491	2	9 747	Ta 7	2	2 1399	1375	21		120	98	11	1	156	183
	4 1714	1619		1 279	293		9 752	197	1	1 237	270	- 23	- 4	344	• 33	12	1	365	278
ź	4 940	976	19	1 1691	1791	6	9 703	717	3	2 106	95	ī	9	384	376	22	ī	181	153
	4 1267	1139	11	1 221	333	2	2 415	505	:	2 11 7	1169	2	- :	215	248	;	3,	417	7403
		10+	14	1 1177	1214		9 901	902		2 107	100	- 4		422		- 3	÷.	<i>3</i> 13	- 221
		271	1.	1 12	23	17	7 434 0 470	-27		2 1533	140	2		337	243	- 2	ž.,	394	371
	4 2 3 8 8	2354	19	1 127		12	100	101	15	2 237	234	7	- ī	404	460		÷.	72	\$7
	4 764	725	22	1 424	414	13	9 4/11	398	11	5 725	247			510	497	13	21	21.7	1241
10		437	21	1 133	, 11	14	9 119	244	12	3 11	145			314	133		5	214	245
iż	4 2469	1	ĩ	2 517	606	ĩĩ	9 350	395	15	Z 591	587	iż	. 4	541	227	1.	- 2 ·	441	972
13	4 1313	1048	2	2 1338	1252	10	9 338	324	17	2 111		43		261	26)	15	ž,	205	196
17	4 276		- 2	2 25	211	21	9 158	155	21	2 25	243	- 12		260	232	17	ź		155
19	4 301	108	5	2 464	473	22	• 131	169		3 1227	1202	17		118	190	18	2	54 5	503
- <u>.</u>	4 524	200	;	2 226	874	;	8 267	110		1 374	210	10	- 3	111	103	- 22		100	23
- 51	4 214	299	•	ริ พี่ไ	321	- 3	8 141	146	5	3 775	16	ō	- ÷	345	398	1	3	79	42
	6 2522	5585	10	2 441	700		8 157	145	•	3 162	347	÷.		111	502	2	31	139	1160
ź	a 362		iż	2 257	2.6		i (iii	344		5 74	123	- 5	Ä	667	64.5		í.	ñio	414
- 3	6 917	905	14	2 460	458		8 90	62	2	3 213	243	:	. :	403	700		3	194	209
•	6 1364	1326	15	2 170	191	ii	# 143	127		3 197	193	- 2	- 2	146	173	10	- š -	6L4	44.5
		***		2 272	244	1.	. 375	2.44	10	3 212	203	Ť	:	700	701	11			107
	0 351	361		2 112	144	12	a 131	171	12	3 232	442	•		376	394	15			139
- i	5 587	582	- ï	3 734	679	1 1	0 121	130	ii.	3 (3)	131	11		192	217	14	3 :	177	384
19		1.47	2	3 1	1553	1 1	0 277	305		3 100	103	12	. :	300	- 217		- 2 -	243	233
	0 243	1100		1 1179	1338		0 223	207	16	3 513	502	- 11	- 1	208	202			550	358
ü	6 357	371		3 645	678	7 1	0 110	128	19	3 127	141	24		233	252	z	4 1	375	1361
14		303	÷.	3 2137	2170		0 140	237	20	3 341		17		276	270			22	187
- 14	6 341	512		3 344	372	ii i	0 223	227	24	3 203	221	20	- 4	203	198	- ÷			332
- 12	A 243	204		3 364	449	12 1		108	Ŷ	4 1394	1311	•	10	100	110	9	2 1	110	1339
- 15	6 264	200	ii	3 452	444	is i	0 214	142	ż	4 563	535	- 5	ĩă	672	474	é	- - - '	49	119
20	a 301	140	12	3 341	332		0 129		- 2	1.01	1446		10	522	320		÷.,	221	217
'n	. 107	67	14	5 121	1125	î î	1 198	413	ŝ	4 112	317	ĩ	ĩõ	331	526	iĭ		065	212
23	. 136	109	15	3 195	214	2 1	1 405	*14		2. 342	372		10	335	312	12	: :	41	
24		444	17	1 211	275		1 107	243	- 4		-		10	240	261	14	- 2 - 3	-	TN6
ĩ	8 756	744	18	3 798	871	51	1 491	500	. 1	4 436	427	12	to	192	138	15		42	254
Ę	314	341	22	3 188	343		1 477	411	15	4 287	494		10	337	347	11		21	234
- :	8 825	636	-1	4 515	505	- i i	1 110	133	12	4 380	696	16	10	140	159	19		103	208
- 5	8 711	732	2	4 1257	1240		1 352	382	13	4 311	320	. 8	10	187	294	21	• 1	2	165
	8 770			4 116	541	10 1	1 410	411	12	3 335	337	20	10	143	179	25		14	101
्रः	4.12			4 492	44.		1 374	377	1.	• 111	130	•	ii	455	517	i	5	33	353
- 11	1 177	473		1 222	230		1 120	110	20	1 111	125			148	329		3 3	41	124
- 15	8 283	282	iž	4 144	162	ii i	1 303	295	2.	4 175	162	- ÷	iï	444	429		5		770
12	1 332	323	13	4 140	143	1. 1	1 155	134	2	3 1303	107	- 2	H	103	14		3 1	08	130
17	i 33i	137	ir		73	- i i	2 251	244	3	5				377	380	10	5	53	.7.
17	8 129	165	10	4 313	299	7 I	z 162	149	•	5 1244	1228	- 5		248	249	11	2.	28	125
21	. 248	270	21	4 112	54		2 134	157	÷	\$ \$71	582	11	ü	241	292	14			428
	10 408	393	1	5 174	899	6 1	2 238	166		5 375	180	12		134	116	1.	2 1	11	205
;	10 572	574	3	5 1017	487	- 4 1	2 124	iii	15	5 143	177	11	ii	211	193	22	5 1	23	126
	10 414	430	ŝ	5 997	942	10 1	2 132	78		5 464	489	17	11	1.01	151	1	۰. ۱	25	412
1	10 449	472	÷.	2 1153	133	- i i	2 126	116	12	3 341	841 271	•	B	158	157	ž	6 10	47	1042
- 4	10 403	384	•	5 485	514	21	5 144	120	is	5 200	201		12	3 3 2	343	÷.			271
	10 072		12	2 1293	1285	- 2 1			17	1 172	226	:	13	170		2	2.1		1176
12	10 145	114	ü	3 424	444	- i i	5 112	124	1.	5 135	141	÷	12	332	344	ĩ		10	615
- 13	10 359	358	14	5 847	857	_ <u> </u>	3 434	432	23	3 256	207		22	178	113		4.5	43	549
10	10 231	430	17	5 307	415	10 1	3 105		24	5 114	120		12	368	297	11		37	449
iř	10 232	242	1.0	5 .09	417	ii i	3 299	2 64		. 1236	1204	12	12	121	• •	ii i	ē ž	11	233
12	10 224	242	14	2 211	242	- 12 12	3 272	200	2	a 636 a 252	247	R	12	244	203	15	:::	22	307
- ă	12 243	275	ñ	5 152	172	31	i iii	142	3	6 366	575	1	11	434	422	ii .	÷ 1	13	151
- 3	12 331	124	22	5 293	292		5 143 5 140	141	:	6 1125	904	1	ii.	327	117	14	1 1	77	277
5	12 424	453	12	6 478	144	. 1	127	iis	-	6 246	157		ñ	334	338	ži		jž	in
- 2	12 249	214	3	* 111	143	- i i	2 2 8 9	292	1	6 236	229	1	13	235	2N 2	22	• i	77	200
- 2	12 145	111	:	6 710	114		2.2	254	- ;	• 243	247	ŭ	13	255	117	1	7 1	ź7	127
	12 215	51.9		• 114	110	7 1	5 242	230		• 20•	275	13	13	110		Z	7.2	17	590

(Table continued)

.

TABLE 1 (continued)

	L 7 7 7	085 281 477 300	FC4L 273 403 317	13	1 2 2 3	131 131 111	FCAL 145 107 1705	N 22 13 14	L FORS 11 147 11 219 11 147	FCAL 131 225 157	H	L .	219 219 417 372	FCAL 224 428 304			271 271 372	FCAL 272 247 395	* * * *	L #2	185 P 100 107 177	CAL 206 115 259
10	;	330	369	1	3	542 1450	562 1507 675	5	12 12 12 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	32 327 299	19		279 209 190	120 ··· 271 191	i i i i i i i i i i i i i i i i i i i	7.7	179 369 149	168 350 188	10		1.	215 54 171
19	7	201 197 113	185	6 7 B	3	172	143 211 1275	37	13 309	294 266 107	1	122	233 409 ¥ 6	187 395 321	10	17	141 203 379 789	129 195 372 281	1233	1 1 1	222	208 311 269
2345		23A 206 318	251 225 326	12	;	1342	1050	į	0 1454 0 223	1585 242	5	10	454 317 357	112 312 201	;	9	355 127 228	335 323 219	479	7 1 1 1 1	57	244 261 190
î		110	415 157 184	14	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	111	103	10	0 119 0 119	1262	10	10	323 151 278	201			216	213 267 234	11	11		182 143 173
11 11 14		191	191	21	;;	130	127	14	0 734	72+ 366 292	14	10	104	119	12	-	188 176 226	176	23		119	189 209 219
15	9	151 133 113	145	1	:	136	145 516 144	1 2 3	1 212	243 71 129	10	11	49 122 103	89 135 115	1		131 705 211 160	120				210 167 170
2 3 3		534 676 194	535 626 573	12	:	108 363 251	11	12	1 231	243 203 62	15	12	365 285 135	355 299 129	11	1	193	191 130 157	10		53	143
4 7 9		440 400 390	438 601 376	2	4 5 5 5	97 1218 345	71 1248 339	14		57 24	í	12	3C8 223 138	223	16	10	133	158 141 178			49	111
11 13 14		396 286 474	399 305 396	5	-	575 572 97	1334	23	2 1291	1 153	3	8	741	775	1	10	171 134 167	124	10	5	149	150 128 186
15	8	226 269 158	250 245	12	3 5 5	#20 1129 378	1153 410i	6 10	2 185 2 185 2 1015 2 316	189 1024 301	12	000	459	487 319 203		10	125	144	123	10 10 19	140	152 143 147
2	10	138	132	11	5	556 757 299	111	12	2 691	101	20	1	146	149	12	10	129 287 258	125 244 287	5712	10	183 157 235	154
3 6 7	10 10 10	41.0	422 271 417	15	3	473 220 153	200	22	2 241	239 140 175		1	144 197 541	835 200 566	37.8	11 11 11	245 269 160	271 263 160				440 530
10	10	276 341	433 293 337	20 21	5 6 6	242 142 137	12.24		3 232	234 142 135	13	1 1 2	115 297 171 591	199 303 172 611	1	11	208 155 204 132	144 144 147	12		43)	404 265 234
11	10	198 215 234	210 212 238		-	230 140 223		10 14 15	3 134	127 154 10	1	222	113	104	2	000	559 152	548 142	12 0	1 2	142	148 153 579 57
1	10	114 250 308	119 183 304 731	ġ		140	204	ž	4 1260	1270 239		222	102 113 438 104	176	10	0000	253	168 256 33	į	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	137	528 90 433
190	ii 11 11	173 270 162	161 278 175	17 21 0	4 7	94 110 1336	50 1042	5	4 411 4 1051 4 351	413 1058 352	11	222	115 382 275	121 344 272	1	1	191 104 518	176 88 527	13	2 2	129	72
12		204	236 195 69 761	2	7777	506 85 741 320	10 10 725 919	10	+ 122 + 422 + 734 + 152	131 418 717	0 1 2	3	904 124 121	905 85 109	1	1 1	153 480 118	141 488 75		3	111	110 25 139
ï	11	138	139	7	;	635 523 507	415 517	17.14	+ 167 + 541 + 125	167 564 130		3	231 704 149	258 720 152 410	10	1111	100 377 340 218	402 335 222	12	1	189 490 205	127 505 181
5 67	12	407	413	ii ii	Ì	302 317	304 474 325	19	+ 130 + 200 5 120	118	10	22	144 373	136 103 371	1	222	198 343 140	205 331 102	3	:		155
17	12	334 112 278	320 118 273	15	į	210	104 230 314	275	5 10	143 100	13	3	117	113 346 52 209	i	2227	115 355 103	134 351 76 120	7		101 122 343 130	1255 154 69
15	12	155	153 144 264	19 20 21	1	101 247 143	175 242 137	10 11 12	5 120	18 91 43	1		522 89 95	533 63 102	10 14 17	2 2 2 2 2	357 240 132	346 241 100	11	;;	120 283 125	120 265 91
	13	228 274 242	249 307 234	1 2	;	505 538 145 562	534 515 151	123	6 324 6 911 6 540	319 911 543	3		479 131 99	492 107 91 439	1	2333	128 210 421 194	122 209 434 185			138 147 106 114	121
	14	110	38 208 275		i	430 131	483		6 37	141 710 455	13		271 129 128	286 77 148	* * *	333	118	119 299 462 102	13		379 172 181 324	360 156 157 325
	0	628 140 271	433 130 274	į	-	406 402	399	10	A 531 A LH	551 201	20	4 7 7	125	124 526	10 9	;;;;	117	153	-		174	174
10	0000	169	144	12	1	415	310	1.5	6 42 6 13 6 19	435	3		239 578 370 739	231 555 376 251	14	3344	144	286 186 116 389	12		124	114
20 0	12	103	76 2210 333	17		195	188	N.	4 14 7 8 7 8	152			504 134 145	510 144 151	5	**	283 354 194	276 359 172	1	;	126	27 71 729
234	:	499	215 499 1765 151	37	:	212 134 121 105	133	-	7 101	182 47 276 122	14		249	239 113 114	11		125 100 107	103 192 32	;		124	133
12	11	278	1509 294 1150	1	19	137	182	17	7 29	299 86 130	1		420 138 111	436	2		288	285	2	1	907 184 348 284	393 344 297
13 14 20 24	1 1	183 748 458 286	117 743 420 242	1	10 19 11 11	123 238 382	37			129		440	122	104 85 315	;		33	272	12 5	333	124 347 163	40 341 18
	2222	747	103	3657		392 318 362 399	406 327 360 413	123	4 50 4 52 1 31 4 22	486 553 317 224	12	****	177 200 149 375	166 199 161 378	17 11 13	****	225 261 158 191	237 262 162 167	67 1 2	1455	100 141 334	58 109 317
Í	222	179	75 192 53	1	H	273 314 281	274 313 275	Š 4 7	1 39 1 44 1 34	~ 374 454 349	134	ļ	221 293 345	217 290 371	15	22.	199 100 301	198 75 284	5	5	270	104 251 33

:

J. Organometal. Chem., 39 (1972)

.

Atom	Positional par	ameters		Thermal po	trameters $(Å^2)^a$					
	×	y	м	B ₁₁	B ₁₂	B ₃₃	B ₁₂	B_{13}	B ₂₃	В
Ru	0.62436(4)	0.55681 (8)	0.26654(4)	5.72 (3)	4.98(3)	3.65(3)	-0.26(5)	0.25(3)	-0.18(3)	
	0.6198(5)	0.7867(11)	0.2311(6)	8.9(6)	4.8(4)	5.6(4)	-0.4(6)	-0.2(5)	-0.1(3)	
0(1)	0.6145 (4)	0.9142(9)	0.2019(6)	14.2(7)	6.0(4)	8.1(4)	-0.7(5)	- 1.7(4)	1.1(3)	
C(2)	0.7033 (4)	0.5341 (14)	0.2100(6)	5.6(4)	9.7(7)	4.1 (4)	-0.7(5)	-0.2(3)	1.7(4)	
0(2)	0.7475 (4)	0.5160(14)	0.1806(5)	6.3(4)	20.6(1.0)	7.7(3)	-0.0(5)	2.4(4)	2.6(5)	
C(3)	0.5798 (4)	0.4955(1)	0.1506(6)	7.4(5)	5.6(5)	4.3(4)	1.1(4)	-0.3(4)	-0.1(3)	
0(3)	0.5508 (3)	0.4525(10)	0.0858(5)	9.7(5)	10.9(5)	6.5(3)	1.4(5)	-2.7(3)	-2.6(4)	
C(I)	0.5493 (5)	0.5387(14)	0.3774(7)	6.3(6)	6,7 (6)	5.6(4)	1.7(5)	0.7(4)	-0.1(4)	
C(2)	0.5957(7)	0.6278(12)	0.4203(6)	8.6(6)	5.1 (5)	3.9(3)	0.2(5)	1.4(4)	-1.0(3)	
C(3)	0.6533 (5)	0.5670(13)	0.4322(6)	8.5(6)	5.7(5)	4.1(3)	-1.3(6)	-0.4(4)	-0.9(4)	
C(4)	0.6685 (5)	0.3990(12)	0.4701 (6)	6.2(6)	6.4(6)	4.5(4)	-0.3(4)	-0.7(4)	-0.3(3)	
C(5)	0.6769 (4)	0.2792(11)	0.3830(6)	6.0(5)	5.6(5)	4.7(4)	-0.2(4)	0.1(4)	0.1(3)	
C(6)	0.6297 (5)	0.3031 (10)	0.3023(6)	5.4(4)	5.3(4)	4.1(3)	0.5(4)	0.3(3)	-0.5(3)	
C(1)	0.5677 (4)	0.2422(13)	0.3324(8)	5.4(5)	5.9(5)	6.3(5)	-0.8(5)	-0.6(4)	0.2(4)	
C(8)	0.5356(5)	0.3606(15)	0.4005(9)	6.5(6)	8.1(7)	6.5(6)	1.8(5)	1.3(5)	0.3 (5)	
C(9)	0.6796 (5)	0.1106(13)	0.4199(7)	6.8(6)	6.6(6)	5.6(4)	0.5(5)	-0.3(4)	-0.5(4)	
z	0.6806 (4)	-0.0208(11)	0.4471 (7)	9.5(6)	5.7 (5)	8.9(5)	0.7(5)	-0.7(4)	1.3(4)	
H(1)	0.518(3)	0.596(9)	0.365 (5)						,	4.6(1.6)
H(2)	0.597(3)	0.750(9)	0.424(5)							5.0(1.4)
H(3)	0.682(3)	0.653(9)	0.452(5)							5.3(1.5)
H(41)	0.631 (4)	0.358(12)	0.505(6)							7.6(2.2)
H (42)	0.704(4)	0.404(11)	0.501 (7)							7.4(2.3)
H(5)	0.710(3)	0.307(9)	0.347 (5)							4.6(1.5)
H(6)	0.634(3)	0.248(8)	0.253(5)							4.0(1.5)
H(71)	0.565(4)	0.136(11)	0.368(6)							6.3 (2.0)
H(72)	0.540(4)	0.230(12)	0.275(7)							8.2(2.3)
H(81)	0.548(4)	0.340(13)	0.459(7)							7.4 (2.6)
H(82)	0.488(5)	0.368(12)	0.396(7)							8.6(2.4)

J. Organometal. Chem., 39 (1972)

ATOMIC PARAMETERS

TABLE 2

^a The B_{ij} 's, in Å², are related to the dimensionless β_{ij} 's employed during refinement as $B_{ij} = 4 \beta_{ij}/(a_i \cdot a_j^*)$.

After several cycles, with $R_1 = 0.057$ and $R_2 = \{w \cdot [|F_o| - |F_c|]^2 / \Sigma (w \cdot F_o^2)\}^{\frac{1}{2}} = 0.059$ an electron density difference map was computed and all of the hydrogen atoms were unambiguously located. The hydrogen atoms were refined isotropically while refinement of the other atoms was continued anisotropically. The refinement was considered complete when in one cycle no thermal or positional parameter changed by as much as 1/5 its estimated standard deviation. After this cycle R_1 was 0.048 and R_2 was 0.047. No systematic dependence of $w \cdot (F_o - F_c)^2$ on $|F_o|$ or $\sin \theta / \lambda$ was observed. In the final electron-density map the standard deviation in the electron density was 0.10 e/Å³. The highest peak in the difference map was in the vicinity of the Ru atom and contained 0.97 e/Å³. The final standard deviation of an observation of unit weight was 0.92. Of the 309 F_c values corresponding to reflections not included in the refinement, 106 were found to lie between $1.0 \times F_{min}$ and $1.5 \times F_{min}$, where F_{min} is the smallest F_{obs} included in the refinement, and one was between $1.5 \times F_{min}$ and $2.0 \times F_{min}$; none was higher than $2.0 \times F_{min}$.

Since refinement in *Pbca* was successful (lower *R* than in *Pbc2*₁ with half as many parameters) and since those reflections which violate the condition for the *a* glide did not change in intensity when the a^* axis was inclined at an angle of 18° with respect to the ϕ axis of the goniometer and are, therefore, not Renninger reflections, the appearance of the anomalous *hk*0 reflections is unexplained. A list of the F_o and final F_c values, in 0.1 electrons, is presented in Table 1.

The following computer programs were used : PICK2, J. A. Ibers, diffractometer settings; DR69, M. D. LaPrade, data reduction; DRAB70, B. G. DeBoer, absorption correction; FORDAP, A. Zalkin, Fourier syntheses; SFIX, local version of SFLS5, C. T. Prewitt, full-matrix least-squares refinement; MGEOM, J. S. Wood, least-squares planes; STAN1, B. G. DeBoer, distances, angles and e.s.d.'s; ORTEP,

Fig. 1. A perspective view of the 1,2,3,6-tetrahapto-(5-cyanocyclooctadienyl)tricarbonyl ruthenium molecule showing ellipsoids of thermal motion which have been scaled to 50% probability distributions.

BOND LENGTHS (Å)

		· · · · · · · · · · · · · · · · · · ·	
Ru-C(1)	2.252(10)	C'(1)-O(1)	1.13(1)
Ru-C(2)	2.210(8)	C'(2) - O(2)	1.09(1)
RuC(3)	2.284(8)	C'(3)-O(3)	1.14(1)
Ru-C(6)	2.161 (9)		
Ru-C'(1)	1.966(9)	C(1)-H(1)	0.88(7)
Ru-C'(2)	1.954(10)	C(2)-H(2)	1.02(8)
Ru-C'(3)	1.904(9)	C(3)-H(3)	1.00(8)
		C(4) - H(41)	1.02(10)
C(1)-C(2)	1.41 (2)	C(4)-H(42)	0.91(10)
C(2)-C(3)	1.41(1)	C(5)-H(5)	0.92(7)
C(3)-C(4)	1.52(1)	C(6)-H(6)	0.80(6)
C(4)-C(5)	1.53(1)	C(7)-H(7)	0.99(8)
C(5)-C(6)	1.53(1)	C(7)-H(72)	0.99(9)
C(6)-C(7)	1.55(1)	C(8)-H(81)	0.84(9)
C(7)-C(8)	1.52(2)	C(8)-H(82)	1.09(10)
C(8)-C(1)	1.54(2)		
C(5)-C(9)	1.48(1)		
C(9)-N	1.15(1)		

TABLE 4

INTERATOMIC ANGLES (°)

C'(1)-Ru-C'(2)	93.0(5)	C(8)-C(1)-H(1)	113(5)
C'(1)-Ru-C'(3)	92.3(4)	C(2) - C(1) - H(1)	114(5)
C'(2) - Ru - C'(3)	99.0(4)	C(1) - C(2) - H(2)	124(4)
	· · ·	C(3)-C(2)-H(2)	109 (4)
Ru-C'(1)-O(1)	173.0(9)	C(2) - C(3) - H(3)	112(4)
Ru-C'(2)-O(2)	177.2(12)	C(4) - C(3) - H(3)	115(4)
RuC'(3)-O(3)	175.1(9)	C(3)-C(4)-H(41)	105(6)
		C(3)-C(4)-H(42)	108(6)
C(1)-C(2)-C(3)	123.6(10)	C(5)-C(4)-H(41)	103 (5)
C(2)-C(3)-C(4)	125.0(10)	C(5)-C(4)-H(42)	105(6)
C(3) - C(4) - C(5)	112.2(7)	C(4)-C(5)-C(9)	111.8(7)
C(4)-C(5)-C(6)	110.6(8)	C(4)-C(5)-H(5)	109(5)
C(5)-C(6)-C(7)	114.8(7)	C(6)-C(5)-C(9)	112.4(8)
C(6)-C(7)-C(8)	112.3(9)	C(6)-C(5)-H(5)	100(5)
C(7)-C(8)-C(1)	113.9(9)	C(5)-C(6)-H(6)	113(5)
C(8)-C(1)-C(2)	125.2(10)	C(7)-C(6)-H(6)	98(5)
C(5)-C(9)-N	178.4(9)	C(6)-C(7)-H(71)	117(5)
	• •	C(6)-C(7)-H(72)	115(6)
H(41)-C(4)-H(42)	104(8)	C(8)-C(7)-H(71)	106(5)
H(71)-C(7)-H(72)	103 (8)	C(8)-C(7)-H(72)	102(6)
H(81)-C(8)-H(82)	114(9)	C(7) - C(8) - H(81)	104(7)
C(9)-C(5)-H(5)	112(5)	C(7)-C(8)-H(82)	119(5)
		C(1)-C(8)-H(81)	108 (8)
		C(1)-C(8)-H(82)	98(5)

TABLE 5

MOLEO 1. Plane -0.24 Dista	CULAR PLAN A containing $42 \times -0.349 \text{ y}+$ nce of atoms for	NES C(1), C(2), -0.905 z+0. rom plane (C(3) 080 = 0 Å)
H(1) H(2) H(3)	-0.14 -0.32 -0.17		
2. Plane -0.30 Dista	B containing 05 $x + 0.254 y +$ nce of atoms fi	—- C(1), C(3), -0.918 <i>z</i> — 1. :om plane (C(4), C(8) 887 = 0 Å)
C(1)	-0.0006	H(3)	0.22
C(3)	0.0006	H(41)	0.59
C(4)	-0.0004	H(42)	0.13
C(8)	0.0004	H(81)	0.57
H(l)	0.19	H(82)	0.29
3. Plane – 0.10 Dista	C containing y = x - 0.739 y + 0.	C(4), C(5), -0.665 z – 0. com plane (C(7), C(8) .001 = 0 Å)
C(4)	0.023	H(41)	0.68
C(5)	0.028	H(42)	0.17
C(7)	0.029	H(71)	1.01
C(8)	-0.023	H(72)	-0.33
C(9)	1.324	H(81)	0.60
H(5)	-0.59	H(82)	0.00
4. Plane -0.2 Dista	D containing 15 $x + 0.898$ y + nce of atoms fi	C(5), C(6), -0.383 z+0 rom plane (C(7) .702 = 0 Å)
	1 094	H(71)	0.61
U(9)	-1.084	H(72)	-0.01
н(э) Н(б)	-0.69	п(12)	-0.25

Angle between A and B 144°44' Angle between B and C 117°6' Angle between C and D 112°41'

C. K. Johnson, thermal ellipsoid drawings; PUBTAB, R. C. Elder, structure factor table.

RESULTS

The molecular structure and atom numbering scheme are shown in Fig. 1. The atomic positional and thermal parameters are presented in Table 2. The bond distances are given in Table 3 and various interatomic angles are listed in Table 4. Table 5 gives the equations for several planes, the distances of atoms from these planes and dihedral angles. In all tables, figures in parentheses are estimated standard deviations occurring in the least significant digit of the parameter.

DISCUSSION

The results presented here support the general scheme in eqn. (1) and, specifically, substantiate the correctness of structures of type (III). The location of the cyano group in (V) implies that this nucleophile attacks the intermediate, (II), from the *exo* direction at ring carbon atom 5. There is, of course, no certainty that all other nucleophiles, especially one as unique as H^- , do the same, but it seems likely that most of them will behave in the same way.

The carbocyclic ligand is attached to the ruthenium atom by a σ bond (2.16 Å) from C(6) and by coordination of a π -allyl group formed by C(1), C(2) and C(3) [Ru-C(1), 2.25 Å; Ru-C(2), 2.21 Å; Ru-C(3), 2.28 Å]. The cyano group occupies the *exo* position on C(5). The manner of attachment of the ring to the metal naturally requires extensive folding of the ring, and this can be seen in Fig. 1. All bond lengths within the ring system have reasonable values, *viz.*, C(5)-C(9), 1.48 Å; C(9)-N, 1.15 Å; C-C single bonds, 1.52-1.55 Å; C-C bonds in the π -allyl group, 1.41 Å. The Ru-C-O groups have Ru-C(av.)=1.94 Å and C-O(av.)=1.12 Å. The C-Ru-C angles average 94.8°.

The $(\pi$ -allyl)-Ru bonding is generally typical of $(\pi$ -allyl)-metal bonding in comparable systems. For example, in the molecules³ $(h^5-C_5H_5)(CO)_2Mo(C_7H_7)$ and $(h^5-C_5H_5)(CO)_2Mo(C_7H_7)Fe(CO)_3$, the C_7H_7 rings are bound to the molyb-denum atom through π -allyl moieties and the outer M-C distances exceed the inner M-C distances while the C-C distances are ≈ 1.41 Å. The Ru(CO)₃ group is not greatly different from that in C₈H₈Ru(CO)₃, where the mean Ru-C and C-O distances are 1.92 and 1.13 Å, respectively⁴.

As often happens when seven- or eight-membered carbocyclic rings have a multiple attachment to a single metal atom, all C-C-C angles within the ring are greater than the ideal values for sp^2 or sp^3 hybridization. In this molecule, the former average 124.6 and the latter range from 110.6° to 114.7°. The C-C-H angles are correspondingly smaller.

The only previous indication that a cyclooctapolyene ring can bond to a metal in this 1,2,3,6-*tetrahapto* fashion is found in a cyclooctatetraene complex of tricarbonylosmium, where such a structure has been inferred from the ¹H NMR spectrum⁵. With the COT compound the 1,2,3,6-*tetrahapto* structure rearranges thermally to a 1,2,3,4-*tetrahapto* one, whereas, with 1,5-cyclooctadiene the 1,2,3,6-*tetrahapto* structure appears to be thermodynamically favored over the 1,2,5,6- or 1,2,3,4-*tetrahapto* ones¹.

REFERENCES

- 1 F. A. Cotton, A. J. Deeming, P. L. Josty, S. S. Ullah, A. J. P. Domingos, B. F. G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4624.
- 2 (a) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18 (1965) 104;
- (b) D. T. Cromer, Acta Crystallogr., 18 (1965) 17.
- 3 F. A. Cotton, B. G. DeBoer and M. D. LaPrade, Special Lectures, 23rd Int. Congr. Pure Appl. Chem., Boston, 6 (1971) 1.
- 4 F. A. Cotton and R. Eiss, J. Amer. Chem. Soc., 91 (1969) 6593.
- 5 M. I. Bruce, M. Cooke, M. Green and D. J. Westlake, J. Chem. Soc. A, (1969) 987.
- J. Organometal. Chem., 39 (1972)